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The topic of this talk:

A physics-based computing 

machine that provides a novel and 

scalable approach to solving

difficult optimization problems.
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Overview

• The Ising Problem

• Ising Machines

• Foundations of All-Optical 

OPO Ising Machines

• Measurement-Feedback 

OPO Ising Machines

• Conclusions
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Problem Statement: Given couplings between a set of spins, find the 

configuration that minimizes the energy function:
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Problem Statement: Given couplings between a set of spins, find the 

configuration that minimizes the energy function:

This is an NP-hard problem*, and is difficult to solve in practice for moderate-size N.

→ Approximate (heuristic) solvers take hours when N=10,000.

* Relation to MAX-CUT will be shown later.
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Problem Statement: Given couplings between a set of spins, find the 
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The Ising Problem
(Combinatorial Optimization Version)
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• 1D Ising model with nearest-neighbor connections

• 2D Ising model with nearest-neighbor connections

• Generalized Ising model with arbitrary connections

Problem Statement: Given couplings between a set of spins, find the 

configuration that minimizes the energy function:
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Problem Statement: Given couplings between a set of spins, find the 

configuration that minimizes the energy function:



The Ising Problem
(Combinatorial Optimization Version)

13Figure credit: Science doi:10.1126/science.354.6310.269

Problem Statement: Given couplings between a set of spins, find the 

configuration that minimizes the energy function:



Why is solving the Ising problem 

interesting?

• Many interesting discrete optimization 

problems can be framed as Ising problems:
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Why is solving the Ising problem 

interesting?

• Many interesting discrete optimization 

problems can be framed as Ising problems:

– Planning/scheduling problems

– Portfolio optimization

– Protein folding
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Image credit: J. Comp. Bio. 21, 11, pp. 823 (2014)
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Why is solving the Ising problem 

interesting?

• Many interesting discrete optimization problems 

can be framed as Ising problems:

– Planning/scheduling problems

– Portfolio optimization

– Protein folding

– Graph problems

– Materials design
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Yuge, et al. Phys. Rev. B 77, 094121 (2008)
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Cut size = 3



MAX-CUT
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Cut size = 4
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Neural Networks

Biol. Cybern. 52, 141-152 

(1985)
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Quantum Annealing

Nature 473, 194-198 (2011)
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Ising Machines
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Uses quantum dynamics 

to solve a classical spin 

Hamiltonian!

Neural Networks

Biol. Cybern. 52, 141-152 

(1985)
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Ising Machines
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CMOS Annealers

ISSCC 24.3 (2015)

Neural Networks

Biol. Cybern. 52, 141-152 
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Diagrams from: EE346 Lecture Notes, Stanford University (M. Fejer)

Optical Parametric Amplifier



Optical Parametric Oscillators
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OPO: Optical Parametric Amplifier in a Cavity

Optical Parametric Amplifier

Diagrams from: EE346 Lecture Notes, Stanford University (M. Fejer)
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OPO: Optical Parametric Amplifier in a Cavity

Optical Parametric Amplifier
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An OPO has a threshold, just like a laser does.

Diagrams from: EE346 Lecture Notes, Stanford University (M. Fejer)
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M. Wolinski and H. J. Carmichael. PRL 60, 1836 (1988)

Squeezed vacuum state below threshold

OPO Phase Properties
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OPO Phase Properties
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M. Wolinski and H. J. Carmichael. PRL 60, 1836 (1988)
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A. Marandi, et al. Optics Express 20, 17 19322 (2012).
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M. Wolinski and H. J. Carmichael. PRL 60, 1836 (1988)

Squeezed vacuum state below threshold

OPO Phase Properties



Time-Multiplexed OPOs

40
Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).
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Typical pulsed OPO case:

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).

1

Laser pulse repetition rate
= Cavity roundtrip time



Time-Multiplexed OPOs
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Npulses

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).

Time-multiplexed OPO case:

1

Laser pulse repetition rate
=

Cavity roundtrip time



Time-Multiplexed OPOs
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Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).



From OPOs to Ising Machine
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So far we just have N uncoupled “spins”.

(Recall that each pulse has phase 0 or π).

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).



From OPOs to Ising Machine
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Add coupling that connects 

neighboring pulses.

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).
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Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).

N = 4 Ising Machine



N = 4 Ising Machine Results
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(no coupling)

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).



N = 4 Ising Machine Results

48

(with coupling)

MAX-CUT

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).



N = 4 Ising Machine Results
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(with coupling)

MAX-CUT

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).



Achieving Arbitrary Connectivity
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Note: with temporal control of couplings, coupling strength can

change during computation (similar to annealing schedule in AQC)

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014). [Supplementary Information].



Achieving Arbitrary Connectivity
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Want N > 128, preferably N >> 1000.

→ Cost, loss, and phase stabilization issues!

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014). [Supplementary Information].
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Measurement-Feedback

OPO Ising Machine

FPGA computes feedback

for ith pulse:

i.e., one N-dim vector-

vector dot product per 

pulse



Feedback Calculations
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Experimental Realization
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Experimental Realization
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MAX-CUT on small graphs
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MAX-CUT on small graphs
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22 edges are crossed

→ Size of “maximum cut” is 22



MAX-CUT on small graphs
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MAX-CUT on small graphs
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Video prepared from data in P.L. McMahon*, A. Marandi*, et al. Science 354, No. 6312, 614 - 617 (2016) by Ryan Hamerly.



MAX-CUT on small graphs
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MAX-CUT on small graphs
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MAX-CUT on small graphs
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MAX-CUT on small graphs

66
Main point: we can solve every N=16 cubic graph instance, so the previous

success probabilities we showed were not just lucky data points.
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Scaling of cubic graphs

68



Scaling of cubic graphs
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Scaling of cubic graphs

70



Scaling of cubic graphs
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What about non-cubic graphs?
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Dense(r) Random Graph
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100 vertices; 495 edges



Dense(r) Random Graph
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100 vertices; 495 edges



Dense(r) Random Graph
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100 vertices; 495 edges



Sensitivity to Edge Density
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Main point: system seems to be able to find exact and approximate solutions 

for a large range of graphs, including both sparse and dense graphs.
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M.W. Johnson, et al. Nature 473, 194-198 (2011)

T.F. Ronnow, et al. Science 345, 6195, 420-424 (2014)

S. Boixo, et al. Nature Comm. 7, 10327 (2016)



Comparison to Quantum Annealing
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Problem class: Sherrington-Kirkpatrick spin-glass problems

(Jij are -1 or +1 uniformly at random)



Comparison to Quantum Annealing
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Problem class: Sherrington-Kirkpatrick spin-glass problems

(Jij are -1 or +1 uniformly at random)

For any given size N, which annealing 

time should we choose?

If we want to predict performance for

larger problem sizes than we can

currently solve, which annealing time 

should we choose?



Comparison to Quantum Annealing
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Problem class: MAX-CUT on unweighted graphs with edge density = 50%



Comparison to Quantum Annealing
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Problem class: MAX-CUT on unweighted graphs with edge density = 50%

(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)



Comparison to Quantum Annealing
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Problem class: MAX-CUT on regular graphs with degree d
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Problem class: MAX-CUT on regular graphs with degree d

Connectivity makes a big difference!

Why?
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Problem class: MAX-CUT on regular graphs with degree d

Connectivity makes a big difference!

Why?

Success probability P ~ exp(-αNphysical)
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Problem class: MAX-CUT on regular graphs with degree d

Connectivity makes a big difference!

Why?

Success probability P ~ exp(-αNphysical)

For dense problems: Nphysical ~ N2

For sparse problems: Nphysical ~ N

Note: α depends on the machine or algorithm



Comparison to Quantum Annealing
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Problem class: MAX-CUT on regular graphs with degree d

Connectivity makes a big difference!

Why?

Success probability P ~ exp(-αNphysical)

For dense problems: Nphysical ~ N2

For sparse problems: Nphysical ~ N

Note: α depends on the machine or algorithm

How can we make quantum annealers with better connectivity?

See: Onodera et al. npj Quantum Information 6, 48 (2020).



Comparison to Quantum Annealing
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(Table from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

Cubic graphs50%-density graphsFully-connected graphs

Note: CIM runtimes are comparable to those of a laptop running a state-of-the-art solver

→ no speedup from use of optics yet!



Choosing Optimal Annealing Times
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

CIM (simulated)

Problem class: Density=50% MAX-CUT
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

CIM (simulated)

Problem class: Density=50% MAX-CUT



Choosing Optimal Annealing Times
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

CIM (simulated) D-Wave 2000Q

Problem class: Density=50% MAX-CUT



Choosing Optimal Annealing Times
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(Figure from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)

CIM (simulated) D-Wave 2000Q

Problem class: Density=50% MAX-CUT



Comparison to Classical State-of-

the-Art

92

(Table from R. Hamerly*, T. Inagaki*, P.L. McMahon*, et al. arXiv:1805.05217)
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Summary

• Networks of coupled OPOs provide an 

alternative platform for physically emulating 

Classical Ising Spin Hamiltonians.

• N = 100 spin system with 10,000 spin-spin 

connections (all-to-all) has been implemented.

• System can find exact and approximate 

solutions for a large range of graphs.

• Time-division multiplexing and measurement-

feedback provide the tools to allow scalable all-

to-all connectivity in optical systems, and may 

have some relevance to AQC. 94
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Example Application:

Cluster Expansion for Materials

96

Yuge, et al. Phys. Rev. B 77, 094121 (2008)

Collaboration with: Alan Aspuru-Guzik (Harvard) and Libor Veis (Czech Acad. Science)

Cubic Carbon Boron Nitride (c-BNC)

C

N

B

Ising problem with spins:



OPO Ising Machine Mechanism

97

→ design interactions in a network of OPOs

to realize this Hamiltonian

Figures adapted from: A. Marandi, et al. Nature Photonics 8, 937 (2014).



Simulations: Density Sensitivity

98pcomp = 0.6 pth pcomp = 1.3 pth



Microring Resonator Network

99Slide kindly provided by: Thomas Van Vaerenbergh (HPE), on behalf of
T. Van Vaerenbergh, J. Pelc, D. Kielpinski, C. Santori, N. Tezak, G. Mendoza, R. Bose and R. Beausoleil



On-Chip All-Optical Ising Machines 

using Slow Light

100

L. Hau, et al. Nature 397, 594-598 (1999)

T. Baba. Nature Photonics 2, 465 (2008)


